Search History Privacy Though Obfuscation:
Introducing the Haystack Project

David Huerta
david @haystackproject.com

January 10™, 2009

mailto:david@haystackproject.com

Abstract

This paper illustrates a proposal for obfuscating search queries with machine-
generated queries that are designed to be as close to indistinguishable from the
human generated ones as possible. This is ultimately to discourage the use of
search histories as a source of user profiling and incrimination. The architecture
and specific techniques to be used by the Haystack Project's search tools to do this
are explained here in technical detail.

Introduction

In 2005, the US Department of Justice issued a subpoena duces tecum to major search engines
asking for large samples of search queries which were to be theoretically used in analyzing the
availability of pornography to minors. The subpeona included a demand for "all queries that
have been entered on your company's search engine between June 1, 2005 and July 31, 2005,
inclusive."! It did not ask for IP addresses or user accounts linking those search terms to
particular users. The inclusion of this would have allowed the federal government an ability to
profile users based on their search histories. Given the eager and bipartisan disdain for privacy
protection in the US Government in the years since then, however, we may not be so lucky next
time. Across the pond, recent data retention laws in the European Union impose regulations on
search engines that would force them to keep an archive of search histories that would be all too
tempting for governments to abuse. This project aims to make the EU's collection of search-
related ISP activity less than useful.

The idea of using machine-generated search queries to hide human-generated searches and
obfuscate search histories is not a new one. It has been discussed recently by Martin Eberhard in
the Spring 2008 issue of 2600. Many of his ideas, even the name, are used in the Haystack
Project (or HayProj, for short). Two implementations for obfuscated search are proposed: A web-
based search tool, and a more powerful browser plug-in, which is functionally closer to
Eberhard's proposal. Mobile applications might also arise in the future and, depending on the
capabilities of the mobile device, function basically the same way the browser plug-in will.

What Hay Looks Like

Machine-generated anything can lead to predictability, which can lead to pattern detection, which
can lead to the magnetic fist of Big Brother finding your search shenanigans in our proverbial
haystack. A bored 12-year old on an FBI job shadowing field trip could easily distinguish the
human-generated search from the fake ones in this bit of search history:

2012-11-17 14:05 Plum
2012-11-17 14:10 Camera
2012-11-17 14:15 Quorum

1 American Civil Liberties Union v. Alberto R. Gonzales
http://www.google.com/press/images/subpoena 20060317.pdf

http://www.google.com/press/images/subpoena_20060317.pdf

2012-11-17 14:17 cascadian independance army Portland
2012-11-17 14:20 Platypus
2012-11-17 14:25 Xylophone

With only the most rudimentary addition of basic dictionary words, its relatively easy to spot
which term our suspect was actually looking for. Here's why:

*Search term source is a dictionary. We know this because its in the program itself, and the word
list never changes.

*Generated terms are only single words.

*Generated terms start with an upper-case letter.

*Generated terms are perfectly spelled.

*Searches all take place on predictable time intervals.

Seriously, who searches for “xylophone?”

This has but one source, a dictionary. It has only one location for the contents, and the contents
never change. No matter how human some search terms may appear, if the list is a single, static
list, simply writing a script to check which terms in a search history are not in the source term list
will be enough to find which ones could not have been generated.

HayProj's raw search term sources will consist of a myriad of websites and web services that can
dynamically change their contents given some parameters. These parameters will be randomized
to further deter the predictability of what the contents will look like. For its initial release,
Haystack will use Google's Hot Trends page, which can provide lists of popular search terms
generated by other humans on a given date between a few years ago and now. The Google Hot
Trends web service would be a cleaner and more elegant means of getting this data, but it
currently does not accept a date for a parameter. Because the time frame that can be queried for
search terms gets larger as time goes on, Hot Trends makes this approach more effective in daily
increments, until the oldest available date is changed, which happens occasionally. For its initial
implementation, HayProj will scrape terms from Google Hot Trends from two random dates with
a random division of the total number of searches from each date, so that the possibility of very
current search topics can't be ruled out as not being machine-generated if the surrounding
searches are somewhat dated (e.g. finding “Obama re-election” surrounded by searches related to
the 2008 primary election).

Hot Trends retrieves the top 100 terms for a given day, but running 100 searches can put a dent in
search performance, adding a lot of wait time. Haystack will retrieve a random number of
randomly chosen terms from each source, but only to a maximum total sum of 20 search terms
and minimum of 5. The maximum term limitation may be relaxed in the future as browsers
become better at rendering JavaScript faster.

As large and extensive as Google's Hot Trends is as a source of search terms, we can make it
harder to build a source to compare search histories with by adding similar sites and services to
the mix that can retrieve content dynamically. News website articles could be scraped by
changing date parameters, random Wikipedia articles could be used as a term source, or even

content from highly active messaging boards and systems too large to archive their content could
be used.

Beyond Google Hot Trends

Hot Trends neatly retrieves real search terms, which vary in the total number of words in a term
and might not always be spelled correctly. This isn't the case with other sources. Scraping the
Drudge Report, for example, would require some way to combine words together to make
phrases. Since the subject of a news article is likely to be mentioned more than once, Haystack
can check for the number of times its mentioned and filter out non-nouns—this means searches
for “and” and “in” by themselves might not be protected, which I'd imagine isn't exactly going to
be a deal-breaker for most users. Another easy shortcut would be to look for the keyword-ad
links that are being placed on news articles if available in the page. To make it easier for sites to
be added to HayProj as term sources, HayProj will standardize its scraping code to work for any
site using a particular publishing platform, such as Wordpress, so that HayProj will already know
which part of the site to look for content in, and what formats are available for looking at content
written in a particular date, having a standard set of permalink formats, etc.

Phrases collected by machines might leave a bit of predictability in the order of words in a
phrase, and even having this predictability in human searches leaves an ability to search for
phrases or multi-word parts of phrases if a forensic analyst was to look for a particular phrase in a
theoretical collection of every possible content source. To deter this, HayProj has an option to
randomize the order of the search terms, which, at least in Google, doesn't usually affect the
search results much. If other search engines are less robust, maybe that's why no one uses them.

The spelling and punctuation in a term also poses a similar risk. To deter the problem of
punctuation, all letters in a search term are made lower case. Spelling errors can be addressed by
a system of random letter replacement that will have a bias towards replacing a random total of
letters between 0 and half the total number of letters in each word with letters closest to them in a
QWERTY keyboard layout, but still leave some smaller possibility of a letter being replaced by
any random character that can be typed. Due to the possibility of this being a performance hit
and the fact that spelling errors can carry a certain personal touch, the user will be an option to
choose whether to include typos or not.

Ideally, the number of web pages and web services used as sources should increase indefinitely
within reason—the reason being that a browser plug-in with over 9000 content grabbing scripts
would be huge and slow. Since that cloudy technical limitation exists, a fair portion of the
sources should be focused on retrieving content that would be suspect by most governments, to
increase the protection for journalists and political activists who would have a more politically or
socially active search history. I predict—I hope this sort of search privacy tool will be popular if
useful in that crowd.

A search made in HayProj will be accompanied by a random number of generated searches under
between 5 and whatever number is bigger than 5 and smaller than make-your-browser-crawl.

Currently the limit is 20. The order that the human search term and generated search terms is
submitted to the search engine (currently only Google) is also randomized, but only the results
for the human-generated search are displayed. Each burst of searches can be triggered by a
human-initiated search or by a combination of human-initiated searches and machine-generated
searches that are initiated at random intervals of time between 1 to 10 minutes after the previous
search runs. In the web interface, machine-generated search bursts run after the first human-
initiated search is ran and continue until that tab or window is closed. In the browser plug-in,
machine-generated searches will begin automatically and continue while the browser is open.

An example of a user-generated search is illustrated below, generated keyword sources are listed
below each search term. Machine-generated searches create the same type of search burst.

-—

army portland

retenton au laws
data

ndependence
cascadian

trek trailer star
mowvie

tiananmen video
squarr

iowa resulls
caucus

galactica 2
batllestar season

ching phoanix
bandiccs az

General news

General news

Civil libarties

Hurnan rights
websile

Google Hat

Trends K site Trends website Trends

Geogle Hot
site:

) [) ([J)

There's Definitely Definitely No Logic; To Human Behavior

) J |

Google Hot]

Actually there is, in search behavior. Humans click results. Sometimes more than one result.
Sometimes they search for related topics with a short period of time. This presents some
interesting challenges. Using Google's Web History tool, you can look into a history of searches
you've made in addition to which result you looked at. The way this is addressed in HayProj is
by choosing a random number of results between 0 and the total number of results returned to
navigate to behind the scenes. Since most users won't click more than half of the search results
returned, a bias can be added to make this number more likely be around the O to 5 range, while
still leaving some wiggle room for people insistent on looking at more pages.

To fake topic-related searches, HayProj will use similar techniques used to retrieve search terms
from non-GHT websites, to retrieve a random number of search phrases from the descriptions of
search results and include those terms in future search bursts that will be chosen at random.

No Need for Trust

The HayProj plug-in and web application will be Free software with a capital F, licensed under
the GPL. In addition to this, the plug-in and web interface’ code is written in client-side code
(JavaScript), so that the user can see precisely what happens when they run it. This addresses the

2 The web interface will use a limited amount of server-side code to work around most browsers' XMLHttpRequest
cross-domain security policy that applies to web content. This code will be publicly available and will be written
in a way that allows the user to audit it with instructions on how to do that posted on the Haystack Project
website.

concern that HayProj might be hiding something nefarious in server-side code that may be open-
source, but still different than the source being publicly distributed.

This still entails a certain amount of trust on the underlying browser and operating system to run
the plug-in's code without any special interpretation or back doors. HayProj is currently being
developed for the open source Mozilla Firefox browser. Ideally, the browser should also run in an
open source operating system.

